POWERS AND SQUARE ROOT

POWERS

A power is a product of two or more equal factors.
The number that you repeat is called the base.
The number of times that you repeat the base is called the index.
Example: $2 \times 2 \times 2 \times 2=2^{4}$

2 is called base

4 is called exponent

Multipliying a number by itself is called squaring. The numbers 1,4 and 9 are square numbers.
7 squared is $7 \times 7=49$
7^{2} means square 7 . So $7^{2}=49$
Squaring is not the same as multiplying the number by 2 .

$$
7^{2} \text { does not mean } 7 \times 2
$$

The cube of a number is given by three of the numbers multiplied together.
Cubing is raising a number to the power of 3 .

2 cubed means $2 \times 2 \times 2=8$
2^{3} means 2 cubed
2^{3} means $2 \times 2 \times 2$
2^{3} does not mean 2×3

How do we read the powers?

$7^{2}=$ Seven squared, seven to the power of two, or the square of 7.
$7^{3}=$ The cube of seven or seven to the power of three, or seven cubed.
$7^{4}=$ Seven to the power of four.

Powers of 10

$10^{2}, 10^{3}, 10^{4}$, etc. $=$ are powers of 10.
$10^{2}=10 \times 10=100$, so you can write $100 \mathrm{as} 10^{2}$.
$10^{3}=10 \times 10 \times 10=1000$, so you can write 1000 as 10^{3}.
$10^{4}=10 \times 10 \times 10 \times 10=10000$, so you can write10 000 as 10^{4}.
The index tells you how many zeros the number has.
For example, the number 100000000 has 8 zeros, so you can write it as 10^{8} for short.
It is often quicker to write large numbers using powers of 10.
$500=5 \times 100=5 \times 10^{2}$.
$3000=3 \times 1000=3 \times 10^{3}$
$4000000000=4 \times 1000000000=4 \times 10^{9}$
Writing numbers using a number between 1 and 10 multiplied by a power of 10 is called standard form.

ROOTS

The reverse or inverse of squaring a number is finding the square root of a number. The square root is the number which, when multiplied by itself, gives the original number.

The symbol for this is
For example, the square root of 49 is seven, which is written as $\sqrt{49}=7$. Since $7 \times 7=49$

3.THE ORDER OF OPERATIONS

The order of operations is :

D EMEMBER

- To square a number, multiply the number by itself.
- The cube of a number is given by multiplying this number by itself three times
- In a power of ten, the index shows the number of zeros.
- Large numbers can be written using standard form.
- Finding the square root is the opposite of squaring.

USEEUL WEEBSITES

www.funbrain.com/kidscenter.html http://www.quia.com/jg/65631.html

1. Complete this table of squares and cubes.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	6	7	8	9	10
Squared				16						
Cubed		8								

2. Write these numbers as a power of 10 .
a) One hundred............. e) One hundred million.
b) Ten thousand
f) One thousand
c) One million
g) Ten million
d) One billion
h) One hundred thousand.
3. Complete and write the answer like a power.

X	2^{2}	2^{3}	2^{4}	2^{5}
2				
2^{2}				
2^{3}				
2^{4}				

X	5^{2}	5^{6}	5^{7}	5^{3}
5^{5}				
5				
5^{4}				
5^{2}				

4.Complete the following table in your books.

Planet	Distance from Sun (Ordinary) Miles	Distance from Sun (Standard form) Miles
Mercury	$35,990,000$	6.724×10^{7}
Venus		
Earth	$93,000,000$	4.8388×10^{8}
Jupiter		2.7955×10^{9}
Neptune		
Pluto	$3,667,900,000$	

IT WILL HELP YOU DEVELOP YOUR COMPETENCIES

ᄃIND OUT!

DID YOU KNOW........?
"A symbol represents something. Typically, a symbol is a way to quickly represent an object, an idea, or a concept. The first mathematical symbols were the numbers, which were a simple way to represent how many of any object there might be.

Here is a table of some of the most frequently used math symbols. Please feel free to send me any additions you would like to see added.

Symbol	What Is It?	
+	Adding Sign. Often referred to as the 'plus' sign.	
-	Subtracting Sign. Often referred to as the 'minus' sign.	
X	Multiplication Sign. Often referred to as the 'times' sign.	
\div	Division Sign.	
=	Equal Sign.	
\|		Absolute Value
()	Parenthesis.	
[]	Square Brackets.	
\%	Percent Sign - Out of 100.	
$\sqrt{ }$	Square Root Sign.	
$<$	Inequality sign. Less Than.	
>	Inequality sign. Greater Than.	
π	Pi	
∞	Infinity	

